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A numerical solution is obtained to describe the behaviour of a uniform bore over a 
sloping beach and the subsequent run-up and back-wash. The results exhibit features 
which have only previously been described in a qualitative manner. These include 
the formation of a landward-facing bore in the back-wash. A comprehensive set of 
results are presented for a typical initial subcritical bore height ratio. 

1. Introduction 
This paper is the first result of a continuing project to develop and examine 

theoretical solutions for wave motions on a beach. A number of recent books (Meyer 
1972; Radok & Provis 1977; Hails & Carr 1975) describe various aspects of the situa- 
tions that occur when water waves are incident on beaches. The particular problem 
considered in this work is the motion near the shoreline. I n  most circumstances 
waves break as they approach the shore, and in their final approach to  the shoreline 
form a turbulent bore. Unbroken waves reach the shoreline under three main 
conditions: (i) where the beach is steep; (ii) where the incident waves are of very 
gentle slope and (iii) where there is so much relatively shallow water in front of the 
shore that bottom friction dissipates most of the energy in the incoming wave. 
Waves break in various ways, but in most circumstances there is a region near the 
shoreline where the waves have short steep turbulent fronts, that is bores, and 
otherwise have very gentle slopes. This region which we call the ‘bore region’ can be 
large or small depending on the slope of the beach and the incident waves. 

Appropriate approximate equations to describe the wave dynamics within the 
bore region are the finite-amplitude shallow-water equations with the steep wave 
fronts represented by bores - mathematically by discontinuities. On some beaches 
broken waves soon become bores and a substantial region may be described by this 
mathematical model. At the very least this model applies to the run-up, even on a 
very steep beach. It is of particular interest to study the nearshore region since the 
highest water levels and greatest sediment transport tend to be a t  the shoreline. 

This work does not include any direct representation of dissipative effects ; 
dissipation is implicit in the bore representation but the basic flow is inviscid. As a 
start in developing solutions we consider this important omission to have advantages. 
There are a number of indications that the commonly used Ch&y friction terms are 
unsuited to unsteady flow problems. Such terms are, after all, empirical terms 
developed from steady river flows. Analytic solutions are possible if no friction is 
included and this gives an important check on the analysis. In  this paper we describe 
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an accurate method of solving the equations and include comparisons with existing 
analytic results. Most of the analytic results are well described and discussed by 
Meyer & Taylor (1972). Further advantages of neglecting friction, at this stage, are 
that the value of the beach slope, y, can be scaled from the equations and comparisons 
with experiment can show more directly the effect of dissipation. One disadvantage 
is that the numerical treatment of the shoreline has not been as straightforward as 
one would wish. 

The ‘uniform bore’ described in the title is an idealized problem. It has the advan- 
tage that it includes most of the features that can occur in the bore region and yet all 
motion near the shore ceases after a finite time. The initial condition is still water over 
a beach of uniform slope. A boundary condition must be specified at the seaward 
boundary which is taken as the edge of the sloping region. We apply boundary 
conditions corresponding to a bore of given strength approaching along a region of 
uniform depth with a uniform flow behind it. Since the boundary conditions must 
be specified in terms of variables on incoming characteristics this does not necessarily 
represent a uniform flow at the seaward boundary. 

In  the ensuing motion the bore advances across the still water to the shoreline 
and causes the water to run up the beach. Eventually the instantaneous shoreline 
reaches a maximum run-up height and the water flows back down the beach. The 
flow soon becomes supercritical and the shoreline would recede continually if it was 
not brought very nearly to rest by the formation of a shoreward-facing bore in the 
interior of the flow. After further gentle oscillations all wave motion propagates out 
of the integration region through the seaward boundary leaving still water at  a higher 
level. This higher level is readily calculated since it corresponds to the level that would 
be obtained by reflexion of the incoming characteristics at  a vertical wall. In  the case 
where flow behind the bore is initially subcritical a reflected bore would form in the 
uniform depth region outside the seaward boundary and affect the motion in the 
shoreline region by changing the incoming characteristics. This is not considered 
here and the simpler case of ‘ constant ’ boundary conditions is imposed. 

Different solutions are obtained by specifying varying seaward boundary con- 
ditions. Realistic simulations of waves on a beach can be obtained by using boundary 
conditions which correspond to water motions shoreward of the region in which 
waves break. Further papers are in preparation describing such solutions and 
comparisons with experiments. 

The equations used to approximate the flow are given in the next section. Their 
characteristics and analytic representation of incident waves are discussed. Also 
included is a local analysis of shoreline motion and a brief summary of analytic 
solutions. Section 3 describes the numerical method of solution. The main body of 
the integration is performed using an explicit Lax-Wendroff scheme as given in 
Richtmyer & Morton (1967). Most attention in developing the model has to be paid 
to the motion of the shoreline point and so a numerical method known to be straight- 
forward was considered desirable for the bulk of the flow. It is also particularly 
important that such a method allows bores to form within the flow interior. 

Results of numerical computation are discussed in §§ 4 and 5. The former section 
gives comparisons with analytical solutions. Good agreement is found except in 
regions where the discretization gives insufficient resolution. In any practical case, 
the finite width of a turbulent bore precludes exact comparison with analysis or 
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computation. The results of computations for a typical subcritical uniform bore are 
presented in detail in 5 6. Experiments performed by Miller (1968) appear to be the 
only published experimental results for a uniform bore. A comparison is made with 
the computations in the concluding section. 

2. Mathematical model 
The finite-amplitude shallow-water equations are a good approximation to inviscid 

flow when any variations of surface level or mean velocity have a length-scale 
many times the maximum depth of water (e.g. see Peregrine 1972, for a derivation). 
Such an approximation comes from assuming both vorticity and vertical accelerations 
are negligibly small. Assuming a beach of uniform slope y ,  the governing equations 
for mass and momentum may be written: 

ah* a(h*u*) -+- = 0, 
at* ax* 

a ~ *  au* ah* 
-+u*-+gcosy-+gsiny at* ax* ax* = 0, 

where h*(x*, t * )  is the total depth of water and u*(x*, t * )  is the depth-averaged water 
velocity. The co-ordinate parallel to the bottom is given by x* and t* refers to the 
time. 

Dimensionless variables are chosen to eliminate the beach slope from the equations. 
These are I (3) 

h = (COSY) h*/h,,  u = u*(gh,)-*, 

x = (siny) x*/h,,  

where h, is a chosen reference depth, e.g. the depth of water a t  the chosen seaward 
boundary. The equations then become 

t = (siny) t*(g/h,)*, 

h++ (hu), = 0, 

U , + U U , + ~ , + ~  = 0. 

We note that there is no need for y to be small. Even on steep beaches where no bore 
forms the thin layer of run-up can be described by these equations. However, in this 
particular work we have assumed that y is sufficiently small that 1 -cosy is 
negligible; there is in this case no need to distinguish between distance measured 
along the beach and in the horizontal. 

Equations (4) and ( 5 )  can be written in seveTal equivalent forms; theasefulness of 
each depending on the particular approach to the problem. A form useful for analysis 
is obtained on defining characteristic variables (Riemann invariants) a, p as 

a = u + 2 c + t - u o  ( 6 )  

and - p  = u - 2 c + t - u 0 ,  (7 )  

where c is the local long-wave velocity defined by c = h* and uo is any constant of 
integration. The equations (4) and ( 5 )  can then be replaced by the four relations 

xf l  = ( u + c ) t g ,  uf l+2cg+tg = 0 ;  (8) 

x ,  = (u-c)t, ,  u,-2c,+t, = 0. ( 9 )  
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,-Shoreline (x = 0) 
Bore A 

Edge of'tlir sloping 

FTGURE 1. Definition sketch. 

Variables x ,  t ,  u and c are considered as dependent variables with a and p as the 
independent variables. Relations (8) define paths a = constant along lines in the 
( x ,  t )  plane given by dx = ( u + c ) d t  whilst (9) defines paths p = constant along 
intersecting lines d x  = ( u - c ) d t .  Such paths in space-time define the advancing 
and receding characteristics respectively and correspond physically to paths of 
infinitesimal wave disturbances. 

Presence of a bore within the problem means that the shallow-water equations 
need to be supplemented by bore relations in the form of internal boundary 
conditions across a moving discontinuity of velocity and water height. A discussion 
of relations valid across a bore is given by Coulson & Jeffrey (1977) in terms 
of the physical variables, or by Peregrine (1974) referring to the characteristic 
variables. 

The problem of a uniform bore incident onto a sloping beach is envisaged as 
shown in figure 1 :With the variables scaled appropriately the region of sloping beach 
is given by x > - 1 with the undisturbed water depth unity a t  the boundary of the 
sloping region. The region x < - 1 comprises of a horizontal bed with an incident 
uniform bore of height h, = c: and a water velocity behind the bore of u,. Slightly 
different shallow-water equations apply in the two regions with a corresponding 
change in the definition of the characteristic variables. For an incident uniform bore 
we have two cases to consider, viz. subcritical bore (u, < c l )  and supercritical bore 
(ul > c,). In this paper only the subcritical case is studied in detail. Only the area of 
the sloping beach is considered in the computations and so we need to interpret the 
required boundary condition to be specified on the fixed line x = - 1. The offshore 
travel of the uniform bore is easily described with the use of the bore relations as all 
motion is steady. Computation of the solution in the sloping region will start only 
from time t = 0 when the bore first meets the seaward boundary of the region of 
calculation, that is x = - 1. 

The shallow-water equations (4) and ( 5 )  are modified for water of constant depth 
by dropping the last term (+  1)  in equation (5). When written in characteristic form 
they yield the relations a' = u+ 2c = constant along advancing characteristic 
lines d x l d t  = U + C  and -p' = u- 2c = constant along receding characteristic lines 
d x / d t  = u - c. Referring to figure 2 the receding characteristic C emanating into the 
horizontal region from the edge x = - 1 at  time zero bounds a uniform region I in 
which both a' and /3' are everywhere constant. The advancing characteristics 
entering the region I1 originate from I and it thus follows that region I1 is a simple 
wave in which the reflected wave forms. Region I11 is bounded by the bore and the 
edge of the sloping beach and is provided with boundary data from I1 in the form of 
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FIGURE 2. Configuration of characteristics for an initially uniform 
subcritical bore on meeting a sloping region. 

values of the Riemann invariant a on the advancing characteristics originating from 
this boundary. Within I1 we have 

a' = u + 2c = a. = u,+ 2Cl,  (10) 

the value a, being constant everywhere. Values of the Riemann invariant change at  
the boundary since we impose continuity of water height and velocity across the 
boundary. Thus the boundary value of the Riernann invariant along the seaward 
boundary is given by 

We notice that ( 1  1)  does not specify wave variables entirely a t  the seaward boundary 
to the sloping region but simply provides a relationship between them. Determination 
of variables at  the seaward boundary must be obtained by combining the values 
given on the advancing characteristics with the values of the characteristic variables 
of the opposite family which originate from the bore. In order to avoid overdetermina- 
tion of our problem only the boundary condition (11) (or its equivalent) is taken. 
The influence of the reflected bore is not taken into account. 

A supercritical bore incident upon a sloping region provides a different seaward 
boundary condition since the first receding characteristic emanating from the bore 
at  the instant of arrival to the sloping region has positive slope and so extends shore- 
wards into this region. In particular the characteristic line is shorewards of the 
seaward boundary x = - 1 and thus values of water height and velocity are the same 
as those recorded in the uniform region. In this case both values of the dependent 
variables are almost trivally determined explicitly but the subsequent motion differs 
from the subcritical case. As water velocity a t  the seaward boundary is unchanged 
with increasing time a mass of water is continually supplied to the sloping beach 
region. This continues irrespective of what happens to the shoreline until such a time 
that a reflected seaward-facing bore is formed within the interior and travels through 
the seaward boundary, bringing the water velocity there to subcritical values. 
Formation of an analogous system of reflected shock waves is recorded by Friedmann 
(1960) where he calculates the formation of a shock wave within a converging duct 

(11)  a = u + 2 c + t  = a,+t. 
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for supercritical flow the reflected shock forms upstream of the converging section for 
subcritical flow. This behaviour for the supercritical case is not as different from the 
subcritical case as appears a t  first sight. The receding characteristics from the 
subcritical bore meet beyond the seaward boundary to  form a reflected bore, over the 
horizontal section. Eventually reflected bores arise in either case and their eventual 
magnitude is equal to that of a bore reflected from a vertical wall. There is further 
discussion of bore formation in Hibberd (1979). 

The boundary conditions at the shoreline are, quite simply, the depth is zero and 
the velocity of the shoreline equals that  of the water. However, numerical imple- 
mentation of these conditions proved to  be troublesome. 

3. Analytic solutions 
Meyer & Taylor (1972) review analytic solutions of the shallow-water equations 

over a beach. More recent papers are those by Spielvogel (1976) and Kajiura (1976). 
The analytic work falls naturally into two parts : smooth solutions or solutions with 
bores. The solutions without bores represent waves which are fully reflected since 
the equations used are non-dissipative ; for example the standing-wave solutions of 
Carrier & Greenspan (1958). These and some solutions of Spielvogel (1976)) who 
considered an initial waveform with water at rest, have been used to  check the 
numerical solution. 

The more important solutions for bores are those of Keller, Levine & Whitham 
(1960) and of Meyer and his associates (summarized in Meyer & Taylor, 1972). 
These show that the bore ‘collapses’ to  have zero height in the limit as the shoreline is 
approached. Hibberd (1979) shows that the slope of the water surface behind the bore 
becomes unbounded. Ho & Meyer (1962) give more details of this shoreline 
‘singularity’. The motion of the shoreline after a bore has reached an otherwise still 
shoreline is shown by Shen & Meyer (1963) to be the same as a particle moving freely 
under gravity; that  is, the shoreline particle is insensitive to  other water motions. 
Thus if u,(t) is the shoreline velocity then in dimensionless variables 

and hence u,(t) = uot--t2, (13) 

where uo is the initial shoreline velocity. I n  this case the characteristics of the two 
families which touch the shoreline are both coincident with the shoreline. Also the 
depth of water near the shoreline is given by 

h(x, t )  = (x - zs)2/9t2, (14) 

where x, is the position of the shoreline, so that the water surface is tangential to  the 
shore a t  the shoreline. Within a characteristic formulation the result (1 3) is shown to 
be limited in time by the appearance of a ‘limit line’. This is interpreted physically 
as the generation of a bore within the back-wash of the motion. 

Standing-wave solutions of Carrier & Greenspan differ in their behaviour near the 
shoreline from that as predicted above. Water depth near the shoreline in this case 
has the form h(z,  t )  oc ( x -x , ) /~  with the shoreline point experiencing a variable 
acceleration. 
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For a smooth wave incident upon a beach with undisturbed water preceding the 
wave then the wave-front is necessarily a characteristic (Jeffrey 1964). A bore 
incident on a beach corresponds to a more complicated four-characteristic configura- 
tion ; bore relations are necessary for a complete determination of the solution. In  the 
run-up no characteristics meet the front of the wave, as there is no water, and hence 
the front cannot be represented by a bore. On the other hand the shoreline need not 
be a single characteristic (and hence following from (6) and (7)  a coincidence of 
characteristics). This point is clarified by the following local analysis. 

Denoting the line separating the dry bed from the wet bed parametrically by 
x = x ( a ) ,  t = t(a) and defining subscript s to represent the limit as the shoreline is 
approached from within the flow. Then 

since water height is zero along the shoreline. The derivative of water velocity 

where the left-hand side is non-zero in general. Equations (4) and ( 5 )  are satisfied as the 
shoreline is approached and give 

and 

Equations (15) to (1 8) yield a series of linearly dependent equations for the partial 
derivatives of the dependent variables at  the shoreline. The condition of zero deter- 
minant gives (dx/dt)2 = u,2, which is satisfied identically, and the resulting relations 
are 

and 

governing the shoreline motion. The extra term in (19) when compared with (12) 
arises from a finite pressure gradient seaward of the shoreline. Bore-less solutions of 
Carrier & Greenspan (1958) and others satisfy this new relation. We also note that 
the equations (19) and (20) also admit the undisturbed equilibrium solution us = 0, 
ahlax = - 1 .  In the case governed by (19) and (20) in which ah/ax $ 0 the character- 
istics only touch the shoreline and are otherwise distinct from each other. The shore- 
line is given as an envelope of characteristics. 

For the special case (12) it is easily seen that there is no influence from continuous 
waves approaching the shoreline. No finite depth gradient will arise spontaneously, 
so the shoreline will recede seawards unless another bore meets it and stops its sea- 
ward motion by a discontinuous influence. This is a simple way of interpreting the 
‘back-wash bore’ first described by Shen & Meyer (1963). We can see from the 
numerical solutions that when this or another bore meets the shoreline the subsequent 
motion is not necessarily of the form (12), thus confirming its special character. 

Further discussion of analytic solutions can be found in Hibberd (1979). 
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4. Numerical method of solution 
Two basic types of numerical methods are usually used for integrating the shallow- 

water equations : (i) methods based on characteristics and (ii) finite-difference 
methods. Previous numerical solutions for waves approaching a beach (Keller et al. 
1960; Freeman & Le MBhautB 1964) have used characteristic methods, but there are 
severe drawbacks to their use when bores are involved. Special techniques need to be 
included to detect bores forming in the flow since they require a separate treatment 
in this formulation. Furthermore in the run-up characteristics become very nearly 
parallel and this leads to a large uncertainty in finding their point of intersection. 

Finite-difference methods have been successfully used to compute shallow-water 
flows with bores, see particularly Houghton & Kasahara (1968). If the equations are 
rewritten into an appropriate conservation form and if the finite-difference representa- 
tion of the derivatives is carefully chosen, then bores may be included without any 
special calculation. I n  this case the conserved quantities are mass and momentum. 
Such numerical schemes were introduced by Lax & Wendroff (1 960) and are discussed 
in the textbook of Richtmyer & Morton (1967). The finite-difference scheme used is 
based directly on their account and includes the possibility of an additional term to 
minimize numerical oscillations due to nonlinear dispersive effects introduced by the 
discretization. These numerical oscillations appear in the form of parasitic waves 
near the bore. With a single bore incident on a beach these oscillations do not unduly 
affect the solution away from the bore or the stability of the scheme. However in 
further work to be reported on periodic solutions where bores advance into thin, 
fast-moving back-wash from previous waves such oscillations prove unacceptable. 

Using a finite-difference space and time grid of space size Ax and time step At and 
defining u ~ , ~  = u ( j A x ,  nAt) the finite difference equations used are 

- 
uj, n+l - 

where 

u =  

g j , n  = 

A =  

F =  

and 

S j , n  = 

m = uh, h = At /Ax ,  

_ -  aF - [ 2 m j h  h - m 2 / h 2 ]  
au 0 '  

m 2 / h  + +h2 

The stability criterion is that 
1 

where u, is the value of the maximum absolute velocity and ck  is the maximum 
water depth. In all computations shown At = 0.4Ax. 
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At the seaward boundary analysis of the characteristics for an initially subcritical 
bore show that the advancing characteristics enter the region of integration whilst 
the receding characteristics originate from within the region. We therefore specify 
in our numerical solution only the incoming Riemann invariant a and determine p, 
the outgoing invariant from within the calculation. The value of /3 is found by a 
simple first-order scheme, given a t  the end of the appendix, and is then combined with 
the prescribed value of a to  determine the dependent variables. 

The shoreline boundary condition is that a t  the shoreline position x,(t)  : 

h = 0 and dx8/dt = u(x,(t), t ) .  

For small, gentle shoreline motions a simple treatment, as described by Sielecki & 
Wurtele (1970), is adequate. However, more complex procedures are required t o  
handle the case of a bore meeting the shoreline and the subsequent run-up and back- 
wash. Details of the scheme, which has proved most successful are given in the 
appendix to  this paper. It may be thought of as giving a predictor-corrector- 
smoothing procedure together with a cut-off to avoid having such small water depths 
that errors incurred by division become a problem. Numerous other more or less 
complicated schemes were tried. Schemes which carefully extrapolate to the shore- 
line, or correspondingly use II shoreline point, are found to  have little merit with thip 
finite-difference scheme, because the small oscillations of scale Ax associated with 
the representation of the bore mean that one extrapolates from relatively poor data. 

5. Comparisons with non-breaking analytic solutions 
It is of fundamental importance that the computational scheme is checked in its 

ability to reproduce analytic results obtained from the same set of differential 
equations. Testing its performance on the various aspects of the flow yields its 
limitations and shortcomings and therefore results can be considered with more 
confidence. Known anaIytic solutions involving non-breaking waves are used as a 
basic reference. Numerical solutions are obtained for various problems in order t o  
test the ability of the numerical scheme developed to  reproduce accurate results in 
describing smooth waveforms away from the shoreline, shoreline position and shore- 
line velocity in both run-up and back-wash modes. 

Figure 3 shows details of the profile near the shoreline for a wave climbing a beach 
of constant slope. The initial profile is as described in parametric form by equation 
(3.1) in the paper of Carrier & Greenspan (1958) with the amplitude coefficient taken 
as e = 0.2. Good agreement is found with the analytic solution of Carrier & Greenspan, 
with the possible exception of the two grid points closest to  the shoreline. These 
points lag behind the moving shoreline in its initial stages of motion where the 
shoreline accelerates rapidly from rest. At positions where the shoreline is not 
accelerating so rapidly better agreement is achieved. 

Comparison of the numerical scheme in the back-wash with the analytic work of 
Spielvogel (1976) is presented in figure 4. The initial profile was taken from the 
paper of Spielvogel and variables suitably scaled so that results compared with 
the case R = 0.1, H = 0.05 considered explicitly. Comparison is found almost 
indistinguishable throughout the 600 time steps used to  calculate the profile for 
t = 0.5. Results are displayed in the same units as Spielvogel. 
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FIGURE 3. Comparison of present numerical scheme with the analytic solution of Carrier & 
Greenspan (1958) equation (3.1),  E = 0.2. + + +,  present scheme; -, 
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FIGURE 4. Comparison with the solution of Spielvogel (1976) for flow in the back-wash. 
-, result of Spielvogel (R = 0.1, H = 0.05) ; + + + , present scheme. 

The periodic solution of Carrier & Greenspan (1958) is used to test the numerical 
scheme over a larger number of time step integrations. A comparison with a period 
of the computation is shown against the analytic solution in figure 5 (a) .  The largest 
discrepancies are found near the turning points of the shoreline velocity. However, 
this error is a local small-scale disturbance a t  the shoreline which can be seen in the 
complementary figure 5 (b ) ,  showing the offshore waveform. Deviation of the wave 
profile from the analytic solution is only observable a t  these most landward grid 
points. If any form of smoothing on the calculated profile near the shoreline is em- 
ployed substantially better accuracy is achieved. A measure of the accuracy for the 
whole waveform is easily implemented in that a t  times tlT = 0, in-, where T is the 
period, the water velocity is zero everywhere in the analytic solution. At the comple- 
tion of the wave period the average absolute mean water velocity is found to be 
2.0 x 10-4 which compares favourably with the expected second-order accuracy of 
the numerical scheme, which for this case is O(iO-4). 
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FIUURE 5 .  (a )  Comparison of shoreline variables between the present scheme and the periodic 
solution of Carrier & Greenspan (1958). Computed points are marked + + over a wave period T. 
(b )  Computed profiles of water velocity near the shoreline for solution corresponding to the exact 
periodic solution of Carrier & Greenspan (1958). The exact shoreline position is shown dotted. 

6. Application to an incident uniform bore 
Motion of a subcritical bore incident onto otherwise undisturbed water on a beach 

is investigated. Computation was started a t  the instant the bore is presumed to have 
reached the toe of the sloping beach and consequently the seaward boundary 
conditions are that a = a. + t. Calculation proceeded in time until all reflected waves 
had propagated seawards and only still water remained. A number of different bore 
strengths were taken and the time history of a typical example is shown in figures 6 
and 7, where the initial bore height was 1.6. Figures 6 and 7 may be usefully studied 
in conjunction with the corresponding space-time diagrams shown as figures 8, 9 and 
10. The bore height of 1.6 is chosen since it seems to be typical of bores on a beach 
(e.g. see Svendsen, Madsen & Hansen 1978, figure 5). 

We refer first to  figure 6 which shows the profile of wave elevation and velocity 
a t  time intervals of 0.4 for the offshore travel and run-up. The shoreline point in the 
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FIGURE 6. For legend see facing page. 

velocity diagram is marked by a vertical line drawn to the zero velocity axis. As the 
incident bore encounters the sloping beach a reflected wave is formed which has the 
immediate effect of reducing the velocity of the water behind the incident bore. There 
is a build-up of slower-moving water causing a rise in the water height a t  the seaward 
boundary. The offshore behaviour closely follows the prediction of Keller et at. ( 1  960) 
except very close to the shoreline. Large gradients in the wave elevation occur close 
to the shoreline together with a sharp rise in the water velocity. This rise in water 
velocity is found to be not so sharp or as high as the velocity predicted by the bore- 
tracking technique of Keller et al, However our numerical scheme has finite grid step 
which limits resolution of the details as the bore approaches the shoreline. In  a real 
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fluid flow there is also a finite width to a bore obscuring the same details. The 
numerical method chosen does however conserve mass and momentum and a t  the 
instant of bore collapse any discrepancy in water velocity involves very small 
quantities of these dependent variables. 

As the bore collapses a t  the shoreline run-up starts. There is an initial acceleration 
of water velocity before the flow is fully dominated by gravity, as the analytical 
results suggest. That is, in the initial stages of run-up the now moving shoreline 
accelerates due to influence from the wave motions rearward of the shoreline. AS the 
wave climbs the beach the gradient of wave height near the shoreline tip rapidly 
decreases and the run-up water depth becomes thinner. The water velocity decreases 
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FIQURE 7. For legend see facing page. 

as the extreme run-up height is approached with negative values first found a t  a 
point seaward of the run-up tip. This adds to the thinning of the run-up in its final 
stages. As the water velocity a t  the shoreline decreases to zero the water velocity 
a t  the seaward boundary also slowly decreases. 

Back-wash and the formation of reflected waves are shown by the wave profiles 
in figure 7 .  Near the wave-tip, where the water is extremely thin, the back-wash 
velocity increases rapidly. The back-wash is retarded by slower-moving water, found 
where the depth is more substantial, creating an almost stationary wave steepening 
on the landward-facing side. This wave forms a bore lying near to the eventual new 
still water level and has the effect of drastically reducing the high back-wash velocities 
to  bring the shoreline almost to rest. The back-wash bore has the characteristics of 
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Non-dimensional distance x 

FIGURE 8. Space-time plot showing contours of water depth, Initial bore height = 1.6. 

Plots of water height are drawn as contours in a space-time diagram in figures 8 
and 9. Figure 8 gives the contours of water depth whilst figure 9 shows the water 
height above the original still water level. In  the former diagram contours in the 
absence of motion are lines parallel to the undisturbed still water shoreline. Large 
gradients of wave height near the wave-front, shortly after the shoreline is set into 
motion, are clearly visible. Near the run-up limit the shoreline profile is approximately 
symmetric and parabolic since, due to very small slopes of wave height near the tip 
region, the shoreline motion is influenced overwhelmingly by gravity. 

The same general behaviour can be seen in figure 10 showing the velocity contours. 
High gradients of water velocity are evident at the start of the run-up. In  the back- 
wash velocities comparable to the uprush velocities in magnitude are produced. 
Again the formation of a back-wash bore and the subsequent reflected waves are 
clearly seen. 

Figure 11 shows the pattern of advancing and receding characteristics which, 
since characteristics may be considered as carrying waves of infinitesimal amplitudes, 
depict the region of influence and domain of dependence of particular specified 
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FIGURE 9. Space-time plot showing contours of water height above the original 
still water level. Initial bore height = 1.6. 

boundary data. Advancing characteristics originate from the seaward boundary 
whilst receding characteristics start from within the flow region. Receding character- 
istics originate from either the bore or the shoreline. Near the point where the incident 
bore reaches the undisturbed shoreline, receding characteristics emanate into a ' fan ' 
of characteristics reminiscent of the simple wave region associated with a horizontal 
dam-break solution. Even in still water such characteristics turn seawards due to  the 
beach slope. The region of influence from the bore near the instant of bore collapse 
covers most of the shoreline motion. The initial shoreline motion is influenced only 
by a section of the seaward boundary extending over a period of only about 25% 
of the total time taken €or the bore to reach the shoreline. The entire run-up and 
back-wash, until the appearance of a back-wash bore, is controlled by data specified 
for only about 10 % of the total time the shoreline takes to reach that position. Of 
course additional data is required for a description of wave motions within the 
interior of the flow. 

12-2 
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Non-dimensional distance x 

FIGURE 10. Spacwtime plot, showing contours of water velocity. Initial bore height = 1.6. 

A concentration of advancing characteristics in the back-wash show the formation 
of a back-wash bore and the subsequent pattern of characteristics at the gently 
oscillating shoreline. An envelope of advancing and receding characteristics form the 
shoreline after the back-wash bore intersects the receding shoreline. The form of the 
characteristic net near the shoreline in the run-up and back-wash modes is not 
identifiable due t o  the concentration of characteristics coupled with the finite 
resolution. Since water of depth less than 6 was deleted, 6 was set at  throughout 
the computation, a correction term to the shoreline should be estimated. An upper 
bound on the shoreline is obtained by taking the local solution given by Shen & 
Meyer (1963). With this prediction the amount to be added a t  the run-up limit of 
figures 8 to 11 is less than 1 % of the horizontal run-up distance. 

7. Discussion 
Figures 6 to 11 clearly depict the succession of stages involved when a single uniform 

bore is incident onto a sloping beach. The offshore bore motion is transformed at  the 
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Non-dimensional distance x 

FIGURE 1 1 .  Space-time plot showing net of advancing (-) and receding (- - -) 
characteristics. Initial bore height = 1.6. 

initially undisturbed shoreline into a wave that surges up the beach and consequently 
followed by the back-wash. In  the latter flow regimes the shoreline acceleration is 
very nearly the component of gravity down the beach slope. Gradients of water 
height a t  the wave-tip are small. The appearance of a second landward-facing bore, 
which is a known feature in long period surf, brings this receding shoreline to  rest. 
The ensuing motion consists of the shoreline gently oscillating to rest whilst the 
interior wave motions propagate seawards. 

I n  figure 12 a comparison of the run-up heights obtained from a series of computa- 
tions is made with the analytic approximations as given by Meyer & Taylor (1972). 
Also marked are best-fit curves through experimentally determined run-up heights 
for a uniform bore as determined by Miller (1968). The results quoted by Meyer & 
Taylor are a combination of taking the motion of the shoreline as dominated by 
gravity and to take as the initial shoreline velocity the value determined from the 
approximation to  offshore bore travel suggested by Whitham (1958). Agreement is 
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FIQURE 12. Comparison of results for run-up heights. 

found t o  be extremely close; this is because in the majority of the run-up the gradient 
of water depth a t  the wave-tip is small. Also for an  initially uniform bore the Whitham 
approximation also produces a remarkable accuracy (Hibberd 1979) in determining 
the initial shoreline velocity. The experimentally generated curves lie somewhat 
below the theoretical curves. Although Miller used a 'smooth' slope for his 
experiments friction effects are apparent. I n  the absence of any friction the curves 
for each beach angle should be almost identical once scaled in the manner of this 
paper. Friction effects are more evident on the smaller beach angles where the run-up 
lengths are greater. It is interesting to  note that the curves for the larger beach 
slopes of 10" and 15" are much closer than for the smaller slope angles since the 
friction effects are less pronounced due to  reduced run-up lengths. The effect of 
friction is t o  reduce the run-up height ; thus from figure 12 it is clear that  addition of a 
friction term could well bring the numerical results in line with the experimental 
results. 

The authors acknowledge with thanks the financial support of the Science Research 
Council. 
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Appendix 
Treatment of boundary points. Near the moving shoreline and at the seaward 

boundary the numerical scheme (21)  needs to be supplemented by boundary values. 
At the shoreline the revised scheme has to predict whether a new grid point must be 
provided for the run-up or if in the back-wash whether a grid point is no longer 
covered by water and therefore must cease to be included in further computations. 
If a new grid point is introduced the values of the variables at  that point must be 
calculated. With a new grid point introduced into the computation known values 
at grid points on the lower time level are insufficient to use the central-difference 
scheme (21) directly. Near the shoreline errors can be magnified due to division by 
small values of water depth in order to determine the water velocity. To avoid these 
difficulties, water velocity is used near the shoreline as a dependent variable and a 
lower bound, 6 say (usually taken as lo"), on the water depth is set, below which the 
water depth is considered zero. In  general the position of the shoreline does not 
coincide with a grid point and it is therefore the last underwater point, denoted by 
subscript s, which requires special attention. At each time step the shoreline does not 
cross more than a single grid interval if the stability criterion (22 )  is satisfied. 

The method of calculation of values at grid points near the shoreline differs accord- 
ing to the direction of motion at  the shoreline. 

(a)  Run-up 

Assuming all values are known at time level nht we are required to solve explicitly 
for hs, n+l,  hs+l, n+l, us, n+l and us+i, n+l,  The following procedure is followed. 

(i) Obtain values at grid index (s+ 1,  n) by a linear extrapolation from values a t  
grid points (s ,  n)  and ( s  - 1 n). 

(ii) Use the Lax-Wendroff scheme to obtain values (s ,  n+ 1) .  
(iii) Calculate provisional values a t  grid point (s+ 1, n+ l ) ,  denoted by u , * + ~ , ~ + ~  

and h,*+l,n+l, by linear extrapolation from values at  (s ,  n+ 1) and ( s -  l 7  n+ 1) .  
What then follows then depends on whether h,*+,,,+, > S (case I) and final values 
at  (s+ 1,  n+ 1 )  are calculated, or hL:+l,n+i 6 6 (case 11) in which case the shoreline 
is deemed not to have reached the grid position (s + 1,  n + 1)  and corrected values at  
(s ,  n+ 1) are calculated. 

Case I. 

using grid points ( s -  1,  n+ l), ( s ,  n+ 1 )  and (s+ 1, n+ 1) .  

(s ,  n+ 1)  to give 

(iv) The Lax-Wendroff scheme is used to provide provisional values at (s ,  n + 2) 

(v) Use a central difference scheme of mass and momentum equations centred at  

and 

. ,  
If I U , + ~ , ~ + ~ ~  c S then (v) is replaced by 

hS+l,,+l = h,*+l,, 
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and, using the relation (19) for the water front, 
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In  (A 3) the relation valid at  the shoreline tip is applied at the most shoreward 
grid point; in general such an error is O(Ax) but due to low gradients of velocity 
where this method is applied the accuracy proves sufficient. 

Case 11. The grid point (s + 1, n + 1) is not, as yet, included in the computation and 
instead a correction scheme for values a t  the grid point (s, n + 1 )  is implemented. 
The procedure follows case I with s replaced throughout by s - 1.  

The first steps (i) and (ii) ensure smooth gradients at  the shoreline so as not to 
cause small-scale disturbances, which in the absence of smoothing, propagate into 
the flow, contaminating the results. Division of the following procedure into two 
separate cases has the advantage of always correcting the values closest to the 
shoreline at  each step. Where the shoreline is fast moving most attention is paid to 
the new grid points created. Where the shoreline is moving slowly then both water 
depth and velocity are small in the vicinity of the shoreline and are more 
susceptible to small scale disturbances; the correction helps to remedy this. 

( b )  Back-wash 

N o  difficulties are encountered in calculating shoreline points in the back-wash. No 
new grid points are added to the computation. We need only to calculate values at  
grid point (s, n+ 1)  with the possibility of the shoreline having receded beyond that 
point. The method is as follows: 

(i) Calculate values at  (s + 1, n )  by linear extrapolation from values a t  (s - 1, n) and 

(ii) Use the Lax-Wendroff scheme to calculate values a t  (s, n+ I) .  If the value 
of the water depth h,,,,, < 6 then that point is no longer active in the computation 
of the back-wash. 

The seaward boundary condition is taken as a given by specifying a value for the 
positive Riemann invariant. For an initially uniform bore the appropriate condition 
is given by (1 1). In  order to obtain values of the dependent variables on the seaward 
boundary the value of the negative Riemann invariant p i s  to be given. For subcritical 
motion the value for p is determined from within the region of integration. The 
differential form satisfied by p is determined from (8) and (9) as 

(s, n). 

appt + (u - c )  ap/ax = 0. 

On performing a one-sided differencing of the above equation we obtain a value for 
p S b ,  n+l, the value at  the seaward boundary at  time level (n + 1) At by 

Values of the dependent variables are given from using (6) and (7 ) .  
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